6,323 research outputs found

    The 3D structure of the Lagrangian acceleration in turbulent flows

    Full text link
    We report experimental results on the three dimensional Lagrangian acceleration in highly turbulent flows. Tracer particles are tracked optically using four silicon strip detectors from high energy physics that provide high temporal and spatial resolution. The components of the acceleration are shown to be statistically dependent. The probability density function (PDF) of the acceleration magnitude is comparable to a log-normal distribution. Assuming isotropy, a log-normal distribution of the magnitude can account for the observed dependency of the components. The time dynamics of the acceleration components is found to be typical of the dissipation scales whereas the magnitude evolves over longer times, possibly close to the integral time scale.Comment: accepted for publication in Physical Review Letter

    Investigation and characterization of constraint effects on flaw growth during fatigue loading of composite materials

    Get PDF
    An investigative program is presented in an attempt to add to the current understanding of constraint effects on the response of composite materials under cyclic loading. The objectives were: (1) to use existing data and to develop additional data in order to establish an understanding and quantitative description of flaw growth in unidirectional lamina under cyclic loading at different load direction to fiber direction angles; (2) to establish a similar understanding and description of flaw growth in lamina which are embedded in laminates between other unflawed lamina; (3) to determine the nature of the influence of constraint on flaw growth by quantitatively comparing the results of the tests; and (4) to develop a model and philosophy of constraints effects based on our investigative results

    Virtual Topology Design for Minimizing Network Diameter and Average Hop Count in WDM Networks

    Get PDF
    We design virtual topologies in wavelength division multiplexing (WDM) networks to minimize the network diameter and average hop count, where network diameter refers to the number of hops of the longest shortest path and average hop count is the average number of hops among the shortest paths of all node pairs. Such objectives are important to WDM networks, especially to those with statistical multiplexing mechanisms such as optical burst switching (OBS) and optical packet switching (OPS). By minimizing the network diameter and average hop count, optical packets or bursts will experience less contention loss and smaller delay due to a reduced number of intermediate nodes en route. In this paper, we first formulate an integer linear program (ILP) for optimal design of virtual topologies with minimized network diameter and average hop count. Then, a novel heuristic least weight minimum diameter (LWMD) is proposed to find good solutions efficiently. Based on the virtual topology obtained, we further design two traffic accommodation schemes to provision wavelengths under a given traffic matrix, with guaranteed network diameter and minimized network resource consumption.published_or_final_versio
    • …
    corecore